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We observe numerically, and explain analytically, a previously unknown phenomenon of quantum-Hall-like
jumps in saturation spectral rigidity in the semiclassical spectrum of a modified Kepler problem as a function
of the interval center. These jumps correspond to integer decreases of the radial winding numbers in classical
periodic motion. We also observe and explain single-harmonic-dominated oscillations of the level number
variance with the width of the energy interval. The level number variance becomes effectively zero for the
interval widths defined by the frequency of the shortest periodic orbit. This signifies that there are virtually no
variations from sample to sample in the number of levels on such intervals.
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I. INTRODUCTION

Level correlations in the semiclassical spectra of classi-
cally integrable systems have recently received renewed at-
tention. The most important development was the realization
of the long-range nature of such correlations �1�, which was
explored for rectangular billiards. While it had been previ-
ously known that the short-range correlations are absent, the
fact reflected by the Poisson statistics of the nearest-neighbor
level spacings �2�, the evidence for the long-range correla-
tions was indirect—namely, through the saturation property
of the spectral rigidity �3,4�. In �1� the correlation function of
the level density was obtained, which explicitly describes the
long-range correlations in the energy spectrum. Furthermore,
in terms of an easily measured quantity, the variance of the
number of levels on an energy interval was investigated and
was shown to have very unusual properties. Namely, for an
interval width narrower than the energy scale associated with
the inverse time of the shortest periodic orbit �traversal along
the smaller side of the rectangle�, the variance equals, in the
lowest approximation, the mean number of levels in the in-
terval, indicating the absence of correlations in level posi-
tions. For intervals wider than such an energy scale, the vari-
ance exhibits nondecaying oscillations around a mean
“saturation value” with the amplitude smaller, yet parametri-
cally comparable to the mean value and with the “period” of
the same order as the above-mentioned scale �the width of
the interval at which the transition from the uncorrelated
with correlated behavior occurs�.

While such behavior of the variance had been previously
predicted via a formal mathematical approach �5�, Ref. �1�
established that it is a direct consequence of the long-range
correlations between energy levels. Two independent analyti-
cal derivations were produced �1�: one based on the direct
use of quantum mechanical expressions for the energy levels
for a particle in a box �6� and the other based on semiclas-
sical periodic orbit theory �3�. Within the latter, it was shown
that the oscillations of the variance can be explained by just
a few shortest periodic orbits. These results were confirmed
numerically with the use of an ensemble-averaging proce-
dure wherein rectangles of the same area, but varying aspect
ratios, were used. The reason why the oscillations of the

variance can be considered counterintuitive is because with
an increase of the interval width and corresponding increase
of the mean number of levels, the fluctuation of the number
of levels in the interval may actually decrease.

It should be pointed out that the only reason that the vari-
ance does not become zero for a rectangular box is that the
harmonics that correspond to the shortest periodic orbits
have incommensurate frequencies and thus add incoherently
�1�. If one could find an integrable system where the variance
is dominated by a single periodic orbit harmonic, it could be
near zero for certain widths of the energy interval. This
would be even more counterintuitive as statistically indepen-
dent systems would produce different local level structures,
yet their total number of levels for such intervals would be
nearly the same. In this work we report finding just such a
system—the modified Coulomb problem—and, in addition
to examining the variance, we find also that the saturation
value of the spectral rigidity �7� exhibits quantum jumps as-
sociated with the change in the winding number ratio of
radial and angular motions of periodic orbits.

In Sec. II, we first review the semiclassical theory of level
correlations: its basic equations and features, plus some re-
sults in Ref. �1�. In Sec. III, we give an analytical description
of the modified Coulomb problem and derive expressions for
the saturation spectral rigidity and for the level number vari-
ance. We then present the numerical calculations of these
quantities, the key results of which are an almost single-
harmonic oscillation of the variance and the “quantum-Hall-
effect”-like jumps in saturation rigidity.

II. PERIODIC ORBIT THEORY
OF LEVEL CORRELATIONS

Following Ref. �1�, we consider the intervals ��−E /2,�
+E /2�, E��, where the states with energies near � have
large quantum numbers and can be described semiclassically.
Denote by N��� the cumulative number of levels �or spectral
staircase� �2�

N��� = �
k

��� − �k� , �1�

where � is unit step function and k labels the energy eigen-
states. A “universal” representation of the staircase data is
obtained by rescaling the energy variable:
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� → ����� � �N���� . �2�

Here �¯� denotes the ensemble average used. In particular,
to a computed eigenvalue �k the value �k�= �N��k�� is as-
signed, so

�N������ = �N���� = �� �3�

and the mean level density is unity in the scaled variable:

�������� = 	�
k

���� − �k��
 = 1, �4�

� = ���−1 = 1. �5�

In practice, we need an approximate analytic form of �N����
to define the scaled energy-axis variable. Then the staircase
representation of the numerical data has a near-45° average
slope.

The present work concentrates on long-range correlations
in the eigenvalue spectrum—but we remark in passing that
the nearest-neighbor level spacings follow the Poisson statis-
tics expected for a classically integrable system �2�.

As in Ref. �1�, the following two “standard” measures
�3,7� for the statistics of large numbers of levels is used here.
First, the spectral rigidity �3�� ;E�—namely, the error of the
least-squares fit to linear behavior of the spectral staircase in
the interval ��−E /2,�+E /2�,

�3��;E� =	 min

�A,B�
1

E
�

�−E/2

�+E/2

d��N��� − A − B��2
 , �6�

whose explicit form is given by

	 1

E
�

�−E/2

�+E/2

d�N 2��� −
1

E2 ��
�−E/2

�+E/2

d� N����2

−
12

E4 ��
�−E/2

�+E/2

d� �N����2
 , �7�

and second, the variance

	��;E� = ��N − �N��2� �8�

of the number of levels N on the interval ��−E /2,�+E /2�:

N��;E� = N�� +
E

2

 − N�� −

E

2

 . �9�

In the representation �2�–�5�, �N�=E.
The fluctuation measures 	 and �3 can be expressed in

terms of the correlation function of the density of levels �7�,

K��1,�2� = �����1�����2�� , �10�

����� = ���� − ������ , �11�

regardless of the form of K��1 ,�2�—for instance,

	��;E� = �
�−E/2

�+E/2 �
�−E/2

�+E/2

K��1,�2�d�1d�2. �12�

Using these relationships one can further show that 	 super-
sedes �3 via an integral relationship �7�

�3��;E� =
2

E4�
0

E

dx�E3 − 2xE2 + x3�	��,x� . �13�

In the periodic orbit theory, the correlation function �10�
can be expressed as a sum over classical periodic orbits �3�.
The important energy scale in the system is that associated
with the period of the shortest periodic orbit:

Emax � 
/Tmin.

For instance, in classically chaotic systems Emax�� and for
classically integrable systems Emax���� �1�. For energies
E�Emax, the levels are uncorrelated and one finds

K��1,�2� � ���2 − �1� , �14�

�3��;E� � E/15, �15�

	��;E� � E . �16�

In the opposite limit E�Emax, the properties of spectral cor-
relations are very different for the classically chaotic and
classically integrable systems �1�. For the former, they are
well known and are described by random matrix theory �7�
and the supersymmetric nonlinear � model �8�. For the latter,
it was believed that they lead to the saturation rigidity given
by �3�

�3

��;E� =

2


N−1�
j

Aj
2

Tj
2 , �17�

where Aj and Tj are the amplitudes and the periods of the
periodic orbits and 2N is the dimension of phase space.

It turns out, however, that the more precise formulas, up
to the leading terms Emax /E, are as follows �1,3�:

K
��1,�2� �
2


N+1�
j

Aj
2 cos� ��1 − �2�Tj




 , �18�

�3

��;E� � �̄3


��;E��1 −
8


N−1�̄3


�

j

Aj
2

E2Tj
4cos�ETj


 
� ,

�19�

	
��;E� � �
j

8Aj
2


N−1Tj
2sin2�ETj

2
 

= 	̄
��;E��1 −

4


N−1	̄

�

j

Aj
2

Tj
2 cos�ETj


 
� ,

�20�

where

�̄3

��;E� =

2


N−1�
j

Aj
2

Tj
2 , 	̄
��;E� = 2�̄3


. �21�

In the above equations, the superscript “
” refers to “satura-
tion behavior” and the overbar to averaging over the oscilla-
tions. Note that both Aj and Tj depend explicitly on the po-
sition of the center of the interval ��E. For instance, in a
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rectangular, with the aspect ratio of its sides L2 /L1=�asp
1/2 , one

finds �3� that the periods are integers �representing the num-
ber of retracings� of irreducible cycles M= �M1 ,M2�,

TM = 2
� �

��
�M1

2�asp
1/2 + M2

2�asp
−1/2� , �22�

where M1 and M2 are coprime “winding numbers” of classi-
cal periodic orbits such that

M1T1 = M2T2, �23�

T1,2 being the periods of motion along the sides L1,2. Expres-
sions for Aj

2 and resulting formulas for the quantities of in-
terest can be found in Refs. �3� and �1�.

The key consequences of the above results are as follows.

First, the amplitude of oscillations around �̄3

�� ;E� decays

with the width of the interval E. Conversely, the amplitude of
oscillations around 	̄
�� ;E� does not decay with an increase
of E; furthermore, this amplitude is of the order of 	̄
�� ;E�.
Second, the amplitudes of oscillations decrease rapidly with
the period of periodic orbits. In a rectangle, for instance,
Aj

2�Tj
−1 and, using Eq. �22�, it is easy to see that just a few

terms with smallest winding numbers should dominate the
sums in the above equations; this was indeed confirmed nu-
merically �1�.

To further appreciate these consequences, consider the
contribution from a single harmonic only and compare the
result with the known behavior of 	
�� ;E� in a completely
uncorrelated system, in an almost rigid spectrum �Gaussian
ensemble� and completely rigid spectrum �harmonic oscilla-
tor�. It is convenient to consider the derivative �	
�� ;E� /�E,
for which we find �1,7�

Uncorrelated

�integrable short range�
Nearly rigid

�Gaussian ensembles�
Rigid

�harmonic oscillator�
Oscillatory

�integrable long range�

�	
��;E�
�E

� 1 E−1 0
4E


N−2 �
j:short

Aj
2

Tj
sin�ETj




 ,

where the summation is limited to the few shortest periodic
orbits and their corresponding harmonics. Clearly, depending
on the interval width E, the oscillatory behavior above of
�	
�� ;E� /�E spans values from uncorrelated �1� to rigidly
distributed �0� spectrum and can even be negative, implying
a seemingly paradoxical result where the fluctuation of the
number of levels decreases as the average interval width �and
the mean number of levels� increases.

Finally, because the frequencies of harmonics are incom-
mensurate, 	
�� ;E� ordinarily does not reach zero; it oscil-
lates between 	max


 �� ;E� and 	min

 �� ;E�, each typically of

order of 	̄
�� ;E� parametrically �for a particle in the box,
see �1��. However, if one can find a system where the short-
est periodic orbit T0 dominates the sum, 	
�� ;E� can be
reduced, as per Eqs. �20� and �21�, to

	
��;E� � 2	̄
��;E�sin2�ET0

2




and can become effectively zero for E=2
n�T0
−1. The same

effect would be also achieved if the periods of other periodic
orbits are integer multiples of T0. We found such a system in
a modified Coulomb problem, which we proceed to discuss
below.

III. MODIFIED COULOMB MODEL

We consider a particle in the central potential

V�r� = −
�

r
+

�

r2 . �24�

Classically, the trajectory of the motion is given by �9�

r =
p

1 + e cos ��� − �0�
, �25�

where

p =
2

�
�� +

L2

2m

 , �26�

e =�1 +
4�

�2�� +
L2

2m

 , �27�

� =�1 +
2m�

L2 . �28�

Using the canonical action variables �10�

Ir = − �L2 + 2m� + �� m

2���
, I� = L , �29�

we can express the energy as

� = −
m�2

2�Ir + �I�
2 + 2m��2

�30�

and rewrite the expressions for p and e as
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p =
I�

2

m�
and e2 = 1 − � I�

Ir + I�

2

, �31�

respectively.
The frequencies of radial and angular motion are given by

�9�

�r =
��

�Ir
=��2����3

m�2 = 2� ���3

2m��̄
, �32�

�� =
��

�I�

=
�r

�
, �33�

where the notation

�̄ =
�2

4�
�34�

was introduced. For any energy �, the motion is condition-
ally periodic except for the following two circumstances.

First, for the values of the angular momentum L such that

� =
Mr

M�

− rational, �35�

the motion becomes periodic with the periods of radial and
angular motions related by

T� = �Tr or M�T� = MrTr � TM. �36�

Here TM is the period of an irreducible cycle M= �Mr ,M��
�Mr and M� are coprime�, whose orbital and angular winding
numbers are, respectively, Mr and M�. In other words, the
orbit closes for the first time after Mr periods of radial mo-
tion and M� periods of angular motion.

Second, from

e = 0 ⇔ Ir = 0, �37�

the motion becomes circular for L such that

L�cir� = �2m�� �̄ − ���
���

, �38�

in which case M= �0,1�. From Eqs. �28� and �29� the corre-
sponding frequency is found as

��
�cir� =

�r

��cir� , �39�

��cir� =� �̄

�̄ − ���
, �40�

where �r is still given by �32� but, since the distance from
the center remains fixed, does not have the meaning of a
radial frequency.

It is very important to notice that �r depends only on the
energy � and does not depend on the angular momentum L.
As was already mentioned, at any energy � the conditionally
periodic motion becomes periodic for such values of L that �
is rational; these values, however, do not depend on �, except
for the constraint

� = �� �̄

���
−

Ir

�2m�

���� �̄

���
−

Ir

�2m�

2

− 1

� ��cir�, �41�

which follows from Eqs. �28� and �40�. Consequently, the
following picture of the periodic orbits emerges. In addition
to circular orbits, whose period

T�cir� =
2�

�r
��cir� �42�

is given by Eqs. �32� and �40� and changes continuously as a
function of energy, there are irreducible orbits such that

Mr = �M���cir�� + i , �43�

where �¯� is the floor function and i are integers such that
Mr and M� are coprime. These correspond to rational �’s,
Eq. �35�, and their period is given by

TM =
2�

�r
Mr = TrMr. �44�

In view of inequality �41�, new rational values of � become
possible at discrete �quantized� values of �. In particular, the
shortest periodic orbits

M� = 1, � = Mr = Mr
min + i , �45�

Mr
min = ���cir�� + 1, i � ��cir�, �46�

are especially important. The key observation here is that as
� increases ���� decreases�, the smaller values of Mr become
possible, with quantum jumps occurring for energies such
that ��cir� is integer. This fact will prove to be crucial in
evaluation of the spectral rigidity and level number variance.
Finally, for either type of periodic orbit, it can be subse-
quently retraced with the period of nTM, where n is the num-
ber of retracings.

IV. SEMICLASSICAL SPECTRUM

The quantum spectrum is given by �11�

�p,l = −
2m�2


2�2p + 1 + ��2l + 1�2 + 2m�/
2�2

� −
m�2

2
2�p + �l2 + 2m�/
2�2
, �47�

which clearly follows from �30� via Born-Sommerfeld. quan-
tization of the action variables

Ir = 
�p +
1

2

, I� = 
�l +

1

2

 , �48�

and the second of Eqs. �47� is the limit of large quantum
numbers, p , l�1, that in the semiclassical approximation
used here. Further, we make yet another approximation that
is concerned with the fact that the standard Kepler problem
�Bohr atom in the quantum limit� is a so called “supersym-
metric” or “resonant” problem �2�. This is because the fre-
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quency of radial and angular motions coincide in the Kepler
problem �so that the motion is periodic�, which is indicative
of extra symmetry in the problem, as well as additional con-
served quantities—Runge-Lenz vector in the present case. In
the Bohr atom, the latter is associated with the n2-fold de-
generacy of the n’s energy eigenstate. Conversely, in a “ge-
neric” �nonresonant� integrable system, the motion is ordi-
narily conditionally periodic, except for specific values of
certain parameters upon which the motion may become pe-
riodic. Thus, in order to achieve the greatest possible differ-
ence with the standard Kepler problem, a large parameter �
must be considered in �24�. Accordingly, we assume that the
condition � /aB

2 �� /aB holds, where aB=
2 /m� is the Bohr
radius—that is, m� /
2�1. This condition translates, as fol-
lows from �47�, to that of the quantum numbers p and l being
limited from above, which, combined with the semiclassical
approximation, yields

1 � p,l ��2m�


2 ,
m�


2 � 1. �49�

Using �49� to expand Eq. �47�, we obtain

�p,l � −
�2

4�
+

�2

4�

2p�2m�/
2 + l2

2m�/
2 � − �̄ + �̄
�p,l

2�
, �50�

and with a substitution

m�


2 → � , �51�

we find

�p,l = 2p�2� + l2 � 2� . �52�

Classically, the condition corresponding to �49� would be

I� �=L�, Ir � �2m� , �53�

leading to

� � − �̄ + �̄
2Ir

�2m� + I�
2

2m�
� − �̄ + �̄

�

2�
, �54�

where

� = 2Ir
�2� + I�

2 � 2� �55�

and Ir,�→ Ir,� /
 are now dimensionless.
Obviously, in both quantum and classical circumstances,

��−�̄ in the zeroth order. The latter leads to simplified for-
mulas for the frequencies since in this approximation

�r �
2�̄

�2m�
, �� =

�r

�
, �56�

and, from Eqs. �40� and �54�,

� � ��cir� =�2�

�
� 1, �57�

as follows from �55�.
Due to the linear relationship between � and � in �50�, the

spectral properties of the two are identical. Consequently, in

what follows, it is the spectrum �52� that is studied numeri-
cally. Similarly to the rectangle, where ensemble averaging
was understood in terms of variations of the rectangle’s as-
pect ratio �1�, here ensemble averaging is understood in
terms of the variations of �. Flattening of the spectrum is
achieved via �2� with

�N���� �
�3/2

3�2�
, �58�

which follows immediately from Eqs. �1� and �52�. This is
equivalent to starting with the scaled Hamiltonian

�sc =
�2Ir

�2� + I�
2�3/2

3�2�
, �59�

for which

�N��sc�� = �sc.

In what follows, we will drop subscript “sc.” The frequencies
are now given by

�r = ��2�3��1/3, �� =
�r

�
, �60�

where

� =�2�

I�
2 =� 2�

�3��2��2/3 − 2Ir
�2�

� ��cir� = �2�

3�

1/3

� 1,

�61�

obtained by solving �59� for I�
2. �For convenience, we carried

over the notation ��cir�.�

V. LEVEL CORRELATION FUNCTION, SPECTRAL
RIGIDITY, AND LEVEL NUMBER VARIANCE

We now turn to evaluation of the level correlation func-
tion �18�. Using the result obtained in the Appendix, we find

K
��1,�2� = �
M

�r

3�Mr
cos�2���1 − �2�Mr

�r

 . �62�

To reduce this to the sum on Mr only, we notice that from
�61� and �46�,

Mr
min = ���cir�� + 1. �63�

Second, for each Mr, there are �Mr /��cir�� possible values of
M�, and consequently, we obtain

K
��1,�2� = �
M

�r

3�Mr
� Mr

��cir��cos�2���1 − �2�Mr

�r

 .

�64�

For very small ��1−�2�, it is possible to reduce this sum to an
integral. Neglecting the difference between the function and
its floor, including time-reversal of each orbit, and using Eqs.
�60� and �61�, we find
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K
��1,�2� � �
Mr=Mr

min

2�r

3���cir�cos�2���1 − �2�Mr

�r

 , �65�

�
1

�

�r
2

3���cir��
Tmin

dx cos���1 − �2�x� , �66�

=���1 − �2� −
sin���1 − �2�/E�

���1 − �2�
, �67�

where

E = Tmin
−1 =

�r

2�Mr
min �68�

and Tmin is the period of the shortest periodic orbit. This is in
complete analogy to the approximate form of the correlation
function found for a rectangular box �1� where the �-function
term corresponds to the absence of level correlations and the
second term the onset thereof.

Similarly, the saturation spectral rigidity �21� is given by

�̄3

��;E� �

�2�

�2 �
Mr=Mr

min
� Mr

��cir�� 1

Mr
3 =

�2�

�2 �
Mr=2

� Mr

��cir�� 1

Mr
3 ,

�69�

where E is now understood as the interval width in the spec-
trum �. The second equality follows from the fact that the
floor function in the sum automatically takes care of the
summation starting with Mr

min.

Together, Eqs. �69�, �61�, and �63� transparently predict
quantum jumps in the saturation level rigidity. As the energy
increases, �cir decreases, and as it takes on smaller integer
values, a transition Mr

min→Mr
min−1 takes place, leading to a

jump in the saturation rigidity. We observe such jumps in
numerical simulations, discussed in the next section.

Finally, the level number variance is given by

	
��;E� �
4�2�

�2 �
Mr=2

� Mr

��cir�� 1

Mr
3sin2��EMr

�r

 , �70�

assuring that 	̄
�� ;E�=2�̄3

�� ;E�.

VI. NUMERICAL SIMULATIONS

We conduct numerical simulations on the spectrum �52�
for central values of �=5�105 and �=1,2 ,3 ,4 ,5�106. As
previously mentioned, “ensemble averaging” is accom-
plished for each � by taking �100 values of � around the
central value. These �’s must be sufficiently close to the
central value, so as to eliminate the systematic dependence
on �, yet sufficiently far to ensure proper sampling. As a first
step, we verified the Poisson �exponential� distribution for
the nearest level spacings, which should be the case for an
integrable system without extra degeneracies �2,12�.

The numerical results for �̄3

 in relation to �69� are shown

in Fig. 1. While �69� provides a wonderful fit to numerical
data on the top plateau, it predicts larger jumps between the

100000 200000 300000 400000 500000
e

20

40

60

80

100

D
ê
3
¶
He,EL

FIG. 1. �Color online� �̄3

�� ;E� vs � for �=3�106. The thicker line is the numerical simulation while the lower thinner line is the

analytical result given by Eq. �69� and the higher one uses the modification �71�; the latter two lines coincide on the top plateau since �71�
gives zero correction for these values of �.
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plateaus than are seen numerically. As a result, to fit lower
plateaus we added an empirical constant via the substitution

� Mr

��cir�� → � Mr

��cir�� + �
n=1

�Mr/�
�cir��−1

1

22n−1 . �71�

At this time we do not have a good explanation for this
discrepancy. Further, the theoretical formula predicts an ad-
ditional noticeable jump farther up in the spectrum, when
��cir�=3 /2, which is not seen on the experimental curve. We
point out, however, that the above empirical constant does

not introduce jumps into the level rigidity, but only adjusts
the heights of the lower plateaus. Furthermore, the positions
of the observed jumps are in excellent agreement with Eqs.
�61� and �63�.

With the same modification �71� in Eq. �70�, we plot
	
�� ;E� as a function of E for two different values of �.
Clearly, while the periodicity is superbly predicted by the
analytical expression, there is a noticeable difference in the
intermediate structure in comparison with the numerical re-
sults. One reason for this may be insufficient sampling due to
constraints on the number of �’s used in the numerical pro-
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FIG. 2. �Color online� 	
�� ;E� vs E for �=3�106 and �=2�105. The jagged line is the numerical simulation while the smooth line
with smaller amplitude is the analytical result given by Eq. �70� and the one with larger amplitude uses the modification �71�.
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FIG. 3. �Color online� Same as
Fig. 2 for �=5�105 �for this
value of �, there is no correction
due to �71��.
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cedure �compare Figs. 2 and 3 with corresponding plots in
Ref. �1��. Unfortunately, as in the latter case, one cannot
improve the statistics much by the usual techniques, such as
spectral averaging, as the required widths of the energy win-
dows would lead to sums of incoherent harmonics �beats�,
leading to the jumps in the level rigidity morphing into a
continuous curve, while also eliminating the effect of near-
zero values of the level number variance.

VII. CONCLUSIONS

We observe numerically, and explain analytically,
quantum-Hall-like jumps of the averaged saturation level ri-
gidity in a modified Coulomb problem. These are explained
semiclassically in terms of the jumps in the winding numbers
of the shortest periodic orbits as the position of the interval
center moves through the energy spectrum. �The analogy
with the quantum Hall effect is largely mathematical, as the
number of terms in the sum also discontinuously changes by
1, in the latter case, when the top Landau level unloads to the
lower levels while moving through the chemical potential
with an increase of the magnetic field.� Also, analytically and
numerically, we predict sinusoidal oscillations of the satura-
tion level number variance with the interval width. This is a
striking result which indicates that, while the distribution of
the levels on a interval varies greatly from sample to sample,
the total number of levels in the interval may be nearly iden-

tical for certain values of the interval width. It comes about
because higher harmonics are integer fractions of the shortest
periodic orbit and add up coherently. The latter also explains
the difference with other systems, such as rectangular boxes,
where the oscillations may be large, but the variance does
not reach a near-zero value.

In the future, a direct evaluation of the variance, using the
formalism of Ref. �6� �similar to a rectangle in Ref. �1��
needs to be done without the use of the periodic orbit theory.

APPENDIX: AMPLITUDES OF PERIODIC ORBITS

The amplitude of an irreducible cycle M= �M1 ,M2� is
given by �13�

AM
2 =

2�

TM
2 �� · �IM/�TM det���i/�Ik�M�

, �A1�

��IM�TM = 2�M . �A2�

This equation can be simplified by differentiating �A2� on T,
which gives

T�
j=1

2
��i

�Ij

�Ij

�T
+ �i = 0, �A3�

whereof

� · �I/�T =
− ��1

2���2/�I2� + �2
2���1/�I1�� + �1�2���1/�I2 + ��2/�I1�

T det���i/�Ik�
, �A4�

so that1

AM
2 =

2�

TM�− ��1
2���2/�I2� + �2

2���1/�I1�� + �1�2���1/�I2 + ��2/�I1��M
, �A5�

which shows a universal dependence of AM
2 on TM.

Here, I= �Ir , I�� and �= ��r ,���=�I��I�, where � is given by �59�. Consequently, from �A5�, we find

AM
2 =

2�

3�TM
=

�r

3�Mr
,

where �r is given by �60�.

1In a more compact form −��1
2���2 /�I2�+�2

2���1 /�I1��+�1�2���1 /�I2+��2 /�I1�= ��2� ��1 /�2� /�I2+�1� ��2 /�1� /�I1�. It can also be
conveniently rewritten in terms of second derivatives of the energy using the first equations of Eqs. �32� and �33�.
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